Cluster in the Cloud

Easy, Scalable, Heterogeneous

Matt Williams Research Software Engineer University of Bristol

The problem

• Researchers having cloud credits

The problem •••

aws

1. Choose AMI

Services 🗸 Resource Groups 🗸

2. Choose Instance Type

3. Configure Instance

Add Storage

5. Add Tags

Researchers having cloud credits

• Presented with:

≡	Google Cloud Platform	🗣 cito 🔻
A	Home	VM instances
(+)	Pins appear here 🔞	Instance groups
<u>ک</u>	Marketplace	Instance templates Sole-tenant nodes
	Billing	Disks
API	APIs & Services >	Snapshots Images
Ť	Support >	TPUs
θ	IAM & Admin >	Committed use discounts
\$	Getting started	Metadata Health checks
0	Security >	Zones
COMPUTE		Network endpoint groups
۰Ô۰	App Engine >	Security scans
۲	Compute Engine >	Settings
٢	Kubernetes Engine >	

PC Dashboard	No default VPC found. Select another	VPC, or	r create a new default VPC .	
			You can launch multiple instances from the same AMI, request Spot instances to take	
Select a VPC	lvantage of the lower pricing, assign an	access	management role to the instance, and more.	
	Number of instances	(i)	1 Launch into Auto Scaling Group (j)	
tual Private oud	Purchasing option	()	Request Spot instances	
Ir VPCs	Network	(i)	vpc-0865229f3d032b76e citc-net-cluster-exciting-scut) C Create new VPC	
onets			No default VPC found. Create a new default VPC.	
ute Tables	Subnet	i	subnet-0bfb83b7ebb34f21d citc-subnet-cluster-excit	
ernet Gateways	Auto-assign Public IP	(i)	32762 IP Addresses available Use subnet setting (Disable)	
ess Only Internet reways	Placement group	() ()	Add instance to placement group	
CP Options Sets	Capacity Reservation	()		
stic IPs	Open		Create new Capacity Reservation	
dpoints	IAM role	(j)	None Create new IAM role	
dpoint Services				
r Gateways	Shutdown behavior	i	Stop 🗘	
ring Connections	Enable termination protection	i	Protect against accidental termination	
curity	Monitoring	(j)	Enable CloudWatch detailed monitoring Additional charges apply.	
twork ACLs	Tenancy	(j)	Shared - Run a shared hardware instance	

⚠ matt @ 9634-4975-8405 ▼ Ireland ▼ Support ▼

6. Configure Security Group 7. Review

The problem 😕

- What they already know:
 - Their field of research
 - Python/R/GROMACS/Relion
 - sbatch/qsub
- We can't expect researchers to be professional sysadmins
 - The intersection is well handled by *Research Software Engineers*

- Give them what they are used to, but in a cloud environment
- They don't have to know the difference
- Except:
 - No queuing
 - Only pay for what they use
- Cluster in the Cloud

Cluster in the Cloud

An automatically-provisioned Slurm cluster

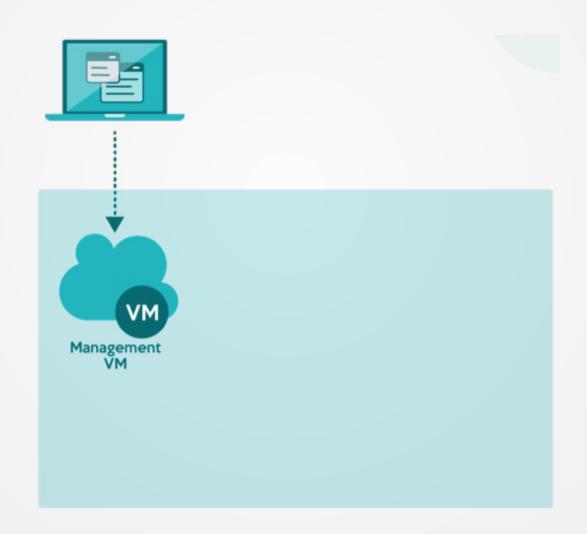
- Vises Terraform to create:
 - Networking
 - Shared file system (Elastic File System)
 - Management/login VM (t3a.medium)
- A Uses Ansible to configure the management VM and compute image

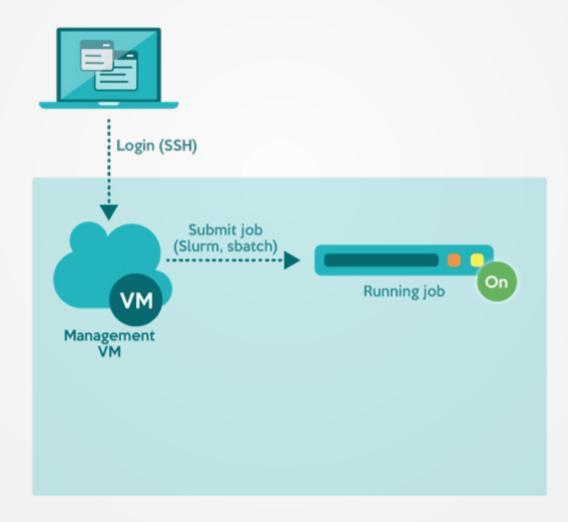
Key Features

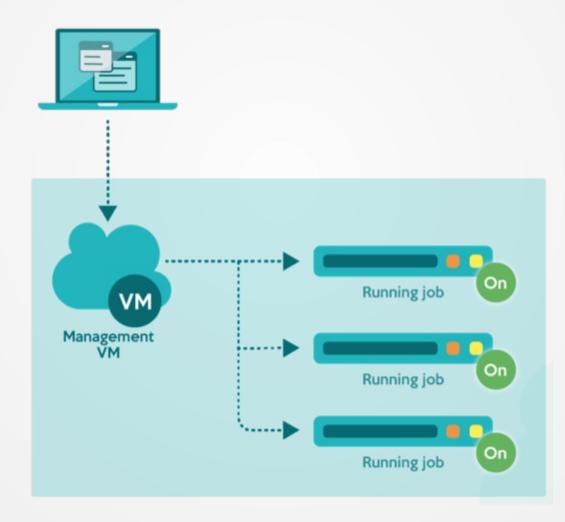
- **1.Familiar**: known environment for researchers with Slurm, JupyterHub etc.
- **2.Versatile**: Allows any number of any combination of instance types in a cluster
- **3.Dynamic**: They are started only when needed
- **4.Cheap**: Base cost is just one VM plus storage
- 5.Cross-cloud: Works on AWS, Google Cloud and Oracle
- **6.Open source**: Under the MIT license and is free to use.

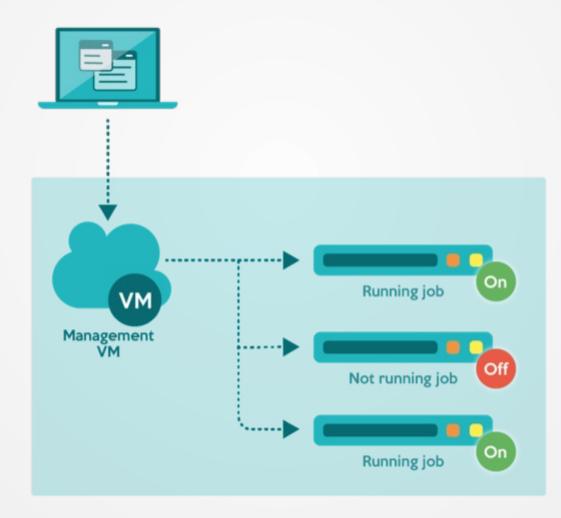
Technical details: Terraform

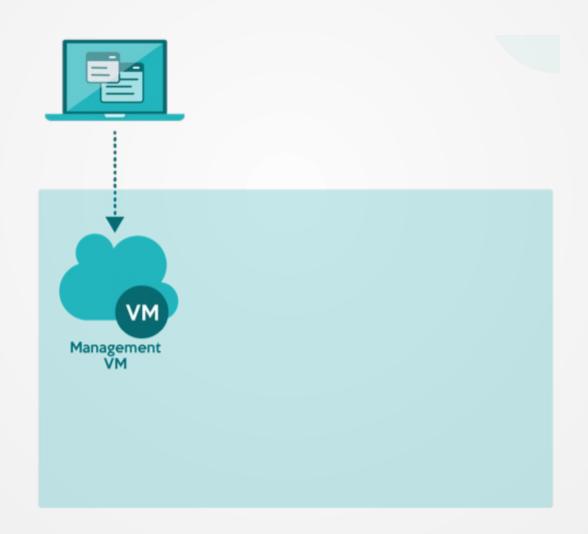
- Terraform is used to create the skeleton
- https://github.com/clusterinthecloud/terraform
 - AWS: ~500 LOC
 - Google: ~400 LOC
 - Oracle: ~450 LOC
- Written from scratch for each platform

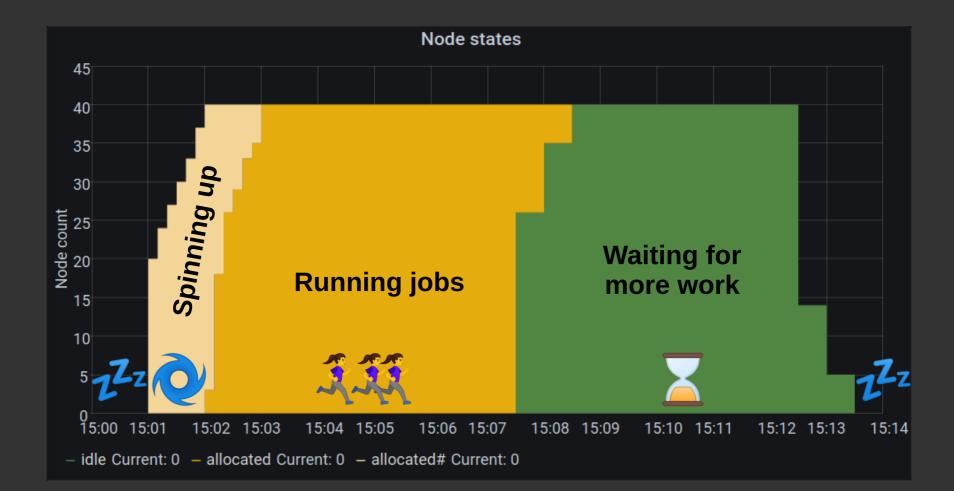

Technical details: Ansible




- •~1.5K lines of Ansible
- https://github.com/clusterinthecloud/ansible
- Configures:
 - Mounting shared filesystem
 - LDAP for user management
 - Slurm
 - Including node start/stop scripts
 - Monitoring (Grafana)
 - Base software set
 - And more...
- Covers both the management VM and compute image


Slurm power management


- Python plugin calls the AWS API
- Initial configuration creates any number of *potential* nodes of each desired type:
 - e.g. 1000 32-core, 1000 16-core, 1000 GPU etc.
- On job submission Slurm
 - 1. Chooses a node type
 - 2. Creates an instance from an image
 - 3. Runs the job
 - 4. Destroys it (after a timeout)



Node states

• 40-node array job, 5 minute runtime

- Full system test ~17 minutes on AWS
 - 1. Create cluster from scratch, including node images
 - 2. Run test job
 - 3. Check other system statuses
 - 4. Tear down whole cluster
- Job submit → job start: 1 minute

Performance characteristics

- Best-suited to heterogeneous high-throughput tasks
- Pipelines needing different node type for different parts
- Can be much more specific than the average on-premise cluster
- Always access to latest hardware, e.g Graviton 2
- At present is not optimised for multi-node workloads
 - No fast interconnect support
 - Only cheap shared storage
- Great for teaching clusters and benchmarking
- Suitable for Dask, Spark, Singularity

Users

- Smoking cessation: A General Mechanism for Signal Propagation in the Nicotinic Acetylcholine Receptor Family 10.1021/jacs.9b09055
- Vaccine delivery: Synthetic self-assembling ADDomer platform for highly efficient vaccination by genetically encoded multiepitope display 10.1126/sciadv.aaw2853

• Other projects:

- COVID research
- Molecular dynamics
- Carbon sequestration
- Radiotherapy research

Hackathon streams

1) Spot instances

Allow creating compute nodes on the spot market

2) Benchmarking

Automatically profile and benchmark workloads

3) Shared storage

Implement a persistent shared storage layer

4) Elastic Fabric Adapter

Integrate AWS EFA for multi-node workloads

Getting help

- During this workshop, ask in the chat and we can direct to GitHub if needed
- First stop should be github.com/clusterinthecloud/support/issues
- We can triage them there and move as necessary
- If it's a feature request or a bug report, I'm happy to guide you to fixing it yourself!

Demo time

Let's see how this works in practice

Thank you

Find out more at cluster-in-the-cloud.readthedocs.io

Thanks to AWS, Google and Oracle for supporting development and to the Bristol RSE team