Cluster in the Cloud

Easy, Scalable, Heterogeneous

Matt Williams Research Software Engineer University of Bristol

The problem

• Researchers having cloud credits

The problem 😕

- Researchers having cloud credits
- Presented with:

	Google Cloud Platfor	🗣 citc 🔫				
A	Home	VM instances	1			
(Ŧ	Pins appear here 🔞	Instance groups				
			Instance templates	I		
Å	Marketplace		Sole-tenant nodes	ue		
-	Billing		Disks	ł		
API	APIs & Services	>	Snapshots			
	AFIS & SELVICES	í	Images	I		
Ť	Support	>	TPUs	1		
Θ	IAM & Admin	>	Committed use discounts			
	Cotting started		Metadata			
S	Getting started		Health checks			
0	Security	>	Zones			
			Network endpoint groups			
COMP	MPUTE		Operations			
-Ô-	App Engine	>	Security scans			
۲	Compute Engine	>	Settings			
٢	Kubernetes Engine	>				

VPC Dashboard Filter by VPC:
Q Select a VPC
Virtual Private Cloud
Your VPCs
Subnets
Route Tables
Internet Gateways
Egress Only Internet Gateways
DHCP Options Sets
Elastic IPs
Endpoints
Endpoint Services
NAT Gateways
Peering Connections
Security
Network ACLs
Security Groups

aws	Services 🗸 F	esource Gro	ups 🗸	*	Д п	natt @ 9634	-4975-840	5 🕶 Irela	ind 👻	Support 👻
1. Choose AMI	2. Choose Instance Type	3. Configu	re Instance	4. Add Storage	5. Add T	ags 6. 0	Configure Se	curity Group	7. Rev	iew
Step 3: Co	nfigure Instan	ice Deta	ils							
No default VF	PC found. Select anothe	er VPC, or cre	ate a new	default VPC .						×
-	tance to suit your requir lower pricing, assign ar						equest Sp	ot instances	to take	
	Number of instances	(i) 1			Laun	ch into Auto	Scaling G	oup (j)		
	Purchasing option	(j)	Request	Spot instances						
	Network	U		9f3d032b76e cit PC found. Create			cuți C	Create new \	/PC	
	Subnet	0		83b7ebb34f21d dresses available	citc-subnet	t-cluster-exc	itin	Create new s	subnet	
	Auto-assign Public IP	(j) (U	se subnet	setting (Disable)			\$			
	Placement group	i	Add insta	ance to placemen	t group					
Open	Capacity Reservation	(j)	÷ (C Create new C	apacity Res	ervation				
	IAM role	i N	one				÷ C (Create new L	AM role	
	Shutdown behavior	(i) St	ор				\$			
Enable	termination protection	i	Protect a	against accidental	terminatio	n				
	Monitoring	•		loudWatch detaile harges apply.	d monitori	ng				
	Tenancy			n a shared hardwa			\$			
				Can	cel Prev	vious Re	eview and l	Launch	Next: Ad	d Storage

The problem 😕

- What they already know:
 - Their field of research
 - Python/R/GROMACS/Relion
 - sbatch/qsub
- We can't expect researchers to be professional sysadmins
 - The intersection is well handled by Research Software Engineers

- Give them what they are used to, but in a cloud environment
- They don't have to know the difference
- Except:
 - No queuing
 - Only pay for what they use

Cluster in the Cloud

An automatically-provisioned Slurm cluster

Vises Terraform to create:

- Networking
- Shared file system (Elastic File System)
- Management/login VM (t3a.medium)
- A Uses Ansible to configure the management VM and compute image

Key Features

- **1. Familiar**: known environment for researchers with Slurm, JupyterHub etc.
- **2. Versatile**: Allows any number of any combination of instance types in a cluster
- **3. Dynamic**: They are started only when needed
- **4. Cheap**: Base cost is just one VM plus storage
- **5. Cross-cloud**: Works on AWS, Google Cloud and Oracle

Slurm power management

- Python plugin calls the AWS API
- Initial configuration creates any number of *potential* nodes of each desired type:
 - e.g. 1000 32-core, 1000 16-core, 1000 GPU etc.
- On job submission Slurm
 - 1. Chooses a node type
 - 2. Creates an instance from an image
 - 3. Runs the job
 - 4. Destroys it (after a timeout)

Node states

• 40-node array job, 5 minute runtime

- Full system test ~17 minutes on AWS
 - 1. Create cluster from scratch, including node images
 - 2. Run test job
 - 3. Check other system statuses
 - 4. Tear down whole cluster
- Job submit → job start: 1 minute

Performance characteristics

- Best-suited to heterogeneous high-throughput tasks
 - Pipelines needing different node type for different parts
 - Can be much more specific than the average on-premise cluster
 - Always access to latest hardware, e.g Graviton 2
- At present is not optimised for multi-node workloads
 - No fast interconnect support
 - Future work will rectify this, e.g. EFA
- Great for teaching clusters and benchmarking
- Suitable for Dask, Spark, Singularity

Users

- Smoking cessation: A General Mechanism for Signal Propagation in the Nicotinic Acetylcholine Receptor Family 10.1021/jacs.9b09055
- Vaccine delivery: Synthetic self-assembling ADDomer platform for highly efficient vaccination by genetically encoded multiepitope display
 - 10.1126/sciadv.aaw2853

• Other projects:

- COVID research
- Molecular dynamics
- Carbon sequestration
- Radiotherapy research

Graviton

- CitC supports all Graviton 1 and 2 instance types, including all A1, M6g, C6g, R6g; virtual and BM
- Enable in limits.yaml with, e.g.:

c6g.4xlarge: 100 r6g.metal: 40 c6g.xlarge: 300

• Launch job with:

sbatch --constraint="arch=aarch64" job.slm

Elastic Fabric Adapter (EFA)

No support yet but is planned Needs support for CentOS 8

Will automatically attach to supported instance types

Benchmarks

- Single core Python benchmarks
 - On a C6g, Graviton 2 gets 1.9 times the performance per dollar than Graviton 1
 - Even R6g are 1.3 better value than Graviton 1
- UoB-HPC Benchmarks
 - Repo: https://github.com/UoB-HPC/benchmarks
 - Synthetic: STREAM
 - MiniApps: CloverLeaf, TeaLeaf
 - Full apps: GROMACS, VASP, UM etc.
 - Thanks to Chris Edsall for running these over the weekend!

Bare metal vs VM

Graviton 1 a1.metal vs a1.4xlarge Less than 1% performance difference

Provisional results, not publication quality!

Graviton 1 vs Graviton 2

Graviton 1 a1.4xlarge vs Graviton 2 c6g.4xlarge Up to 6x performance improvement

Provisional results, not publication quality!

Graviton 2 vs AMD EPYC

AMD EPYC **c5a.16xlarge** vs Graviton 2 **c6g.16xlarge** Up to 2x performance improvement

Provisional results, not publication quality!

Thank you

Find out more at cluster-in-the-cloud.readthedocs.io

Thanks to AWS, Google and Oracle for supporting development and to the Bristol RSE team