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The problem      
● Researchers having cloud credits
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● Researchers having cloud credits
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The problem      
● What they already know:

– Their field of research
– Python/R/GROMACS/Relion
– sbatch/qsub

● We can’t expect researchers to be 
professional sysadmins
– The intersection is well handled by Research 

Software Engineers



  

The solution      
● Give them what they are used to, but in a 

cloud environment
● They don’t have to know the difference
● Except:

– No queuing
– Only pay for what they use



  

Cluster in the Cloud

An automatically-provisioned Slurm cluster

Uses Terraform to create:
– Networking
– Shared file system (Elastic File System)
– Management/login VM (t3a.medium)

Uses Ansible to configure the management 
VM and compute image



  

Key Features

1. Familiar: known environment for researchers 
with Slurm, JupyterHub etc.

2. Versatile: Allows any number of any 
combination of instance types in a cluster

3. Dynamic: They are started only when needed

4. Cheap: Base cost is just one VM plus storage

5. Cross-cloud:  Works on AWS, Google Cloud 
and Oracle



  

Slurm power management
● Python plugin calls the AWS API
● Initial configuration creates any number of potential 

nodes of each desired type:
– e.g. 1000 32-core, 1000 16-core, 1000 GPU etc.

● On job submission Slurm

1. Chooses a node type

2. Creates an instance from an image

3. Runs the job

4. Destroys it (after a timeout)



  



  



  



  



  



  

Node states
● 40-node array job, 5 minute runtime
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Timings 
● Full system test ~17 minutes on AWS

1. Create cluster from scratch, including node images

2. Run test job

3. Check other system statuses

4. Tear down whole cluster
● Job submit  job start: 1 minute→



  

Performance characteristics      

Best-suited to heterogeneous high-throughput tasks
– Pipelines needing different node type for different parts
– Can be much more specific than the average on-premise 

cluster
– Always access to latest hardware, e.g Graviton 2

At present is not optimised for multi-node workloads
– No fast interconnect support
– Future work will rectify this, e.g. EFA

Great for teaching clusters and benchmarking

Suitable for Dask, Spark, Singularity



  

Users
● Smoking cessation: A General Mechanism for Signal Propagation 

in the Nicotinic Acetylcholine Receptor Family
10.1021/jacs.9b09055

● Vaccine delivery: Synthetic self-assembling ADDomer platform for 
highly efficient vaccination by genetically encoded multiepitope 
display
10.1126/sciadv.aaw2853

● Other projects:
– COVID research
– Molecular dynamics
– Carbon sequestration
– Radiotherapy research

https://doi.org/10.1021/jacs.9b09055
https://doi.org/10.1126/sciadv.aaw2853


  

Graviton
● CitC supports all Graviton 1 and 2 instance types, 

including all A1, M6g, C6g, R6g; virtual and BM
● Enable in limits.yaml with, e.g.:

● Launch job with:
   sbatch --constraint="arch=aarch64" job.slm

c6g.4xlarge: 100
r6g.metal: 40
c6g.xlarge: 300



  

Elastic Fabric Adapter (EFA)

No support yet but is planned

Needs support for CentOS 8

Will automatically attach to
supported instance types



  

Benchmarks
● Single core Python benchmarks

– On a C6g, Graviton 2 gets 1.9 times the performance per 
dollar than Graviton 1

– Even R6g are 1.3 better value than Graviton 1
● UoB-HPC Benchmarks

– Repo: https://github.com/UoB-HPC/benchmarks
– Synthetic: STREAM
– MiniApps: CloverLeaf, TeaLeaf
– Full apps: GROMACS, VASP, UM etc.
– Thanks to Chris Edsall for running these over the weekend!

https://github.com/UoB-HPC/benchmarks


  

Bare metal vs VM

Graviton 1 a1.metal vs a1.4xlarge 
Less than 1% performance difference

Provisional results, not publication quality!



  

Graviton 1 vs Graviton 2
Graviton 1 a1.4xlarge vs Graviton 2 c6g.4xlarge 

Up to 6x performance improvement

Provisional results, not publication quality!



  

Graviton 2 vs AMD EPYC
AMD EPYC c5a.16xlarge vs Graviton 2 c6g.16xlarge

Up to 2x performance improvement

Provisional results, not publication quality!



  

Thank you

Find out more at
cluster-in-the-cloud.readthedocs.io

Thanks to AWS, Google and Oracle for supporting development and to the Bristol RSE team

https://cluster-in-the-cloud.readthedocs.io/
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