

Cluster in the Cloud
Easy, Scalable, Heterogeneous

Matt Williams
Research Software Engineer

University of Bristol

The problem
● Researchers having cloud credits

The problem
● Researchers having cloud credits
● Presented with:

The problem
● What they already know:

– Their field of research
– Python/R/GROMACS/Relion
– sbatch/qsub

● We can’t expect researchers to be
professional sysadmins
– The intersection is well handled by Research

Software Engineers

The solution
● Give them what they are used to, but in a

cloud environment
● They don’t have to know the difference
● Except:

– No queuing
– Only pay for what they use

Cluster in the Cloud

An automatically-provisioned Slurm cluster

Uses Terraform to create:
– Networking
– Shared file system (Elastic File System)
– Management/login VM (t3a.medium)

Uses Ansible to configure the management
VM and compute image

Key Features

1. Familiar: known environment for researchers
with Slurm, JupyterHub etc.

2. Versatile: Allows any number of any
combination of instance types in a cluster

3. Dynamic: They are started only when needed

4. Cheap: Base cost is just one VM plus storage

5. Cross-cloud: Works on AWS, Google Cloud
and Oracle

Slurm power management
● Python plugin calls the AWS API
● Initial configuration creates any number of potential

nodes of each desired type:
– e.g. 1000 32-core, 1000 16-core, 1000 GPU etc.

● On job submission Slurm

1. Chooses a node type

2. Creates an instance from an image

3. Runs the job

4. Destroys it (after a timeout)

Node states
● 40-node array job, 5 minute runtime

S
p

in
n

in
g

 u
p

Running jobs
Waiting for
more work

Timings
● Full system test ~17 minutes on AWS

1. Create cluster from scratch, including node images

2. Run test job

3. Check other system statuses

4. Tear down whole cluster
● Job submit job start: 1 minute→

Performance characteristics

Best-suited to heterogeneous high-throughput tasks
– Pipelines needing different node type for different parts
– Can be much more specific than the average on-premise

cluster
– Always access to latest hardware, e.g Graviton 2

At present is not optimised for multi-node workloads
– No fast interconnect support
– Future work will rectify this, e.g. EFA

Great for teaching clusters and benchmarking

Suitable for Dask, Spark, Singularity

Users
● Smoking cessation: A General Mechanism for Signal Propagation

in the Nicotinic Acetylcholine Receptor Family
10.1021/jacs.9b09055

● Vaccine delivery: Synthetic self-assembling ADDomer platform for
highly efficient vaccination by genetically encoded multiepitope
display
10.1126/sciadv.aaw2853

● Other projects:
– COVID research
– Molecular dynamics
– Carbon sequestration
– Radiotherapy research

https://doi.org/10.1021/jacs.9b09055
https://doi.org/10.1126/sciadv.aaw2853

Graviton
● CitC supports all Graviton 1 and 2 instance types,

including all A1, M6g, C6g, R6g; virtual and BM
● Enable in limits.yaml with, e.g.:

● Launch job with:
 sbatch --constraint="arch=aarch64" job.slm

c6g.4xlarge: 100
r6g.metal: 40
c6g.xlarge: 300

Elastic Fabric Adapter (EFA)

No support yet but is planned

Needs support for CentOS 8

Will automatically attach to
supported instance types

Benchmarks
● Single core Python benchmarks

– On a C6g, Graviton 2 gets 1.9 times the performance per
dollar than Graviton 1

– Even R6g are 1.3 better value than Graviton 1
● UoB-HPC Benchmarks

– Repo: https://github.com/UoB-HPC/benchmarks
– Synthetic: STREAM
– MiniApps: CloverLeaf, TeaLeaf
– Full apps: GROMACS, VASP, UM etc.
– Thanks to Chris Edsall for running these over the weekend!

https://github.com/UoB-HPC/benchmarks

Bare metal vs VM

Graviton 1 a1.metal vs a1.4xlarge
Less than 1% performance difference

Provisional results, not publication quality!

Graviton 1 vs Graviton 2
Graviton 1 a1.4xlarge vs Graviton 2 c6g.4xlarge

Up to 6x performance improvement

Provisional results, not publication quality!

Graviton 2 vs AMD EPYC
AMD EPYC c5a.16xlarge vs Graviton 2 c6g.16xlarge

Up to 2x performance improvement

Provisional results, not publication quality!

Thank you

Find out more at
cluster-in-the-cloud.readthedocs.io

Thanks to AWS, Google and Oracle for supporting development and to the Bristol RSE team

https://cluster-in-the-cloud.readthedocs.io/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

